
AMSbench: A Comprehensive Benchmark for
Evaluating MLLM Capabilities in AMS Circuits

Abstract

Multimodal large language models (MLLMs) are extensively applied in the field of
Analog / Mixed-Signal (AMS) circuit design, demonstrating significant potential
in circuit analysis and design. However, there is currently no comprehensive
benchmark to assess the performance of existing models. To address this, we
propose AMSbench, which includes tasks related to circuit schematic perception,
circuit analysis, and circuit design. The AMSbench test set includes approximately
10,000 questions across varying difficulty levels for each task, and evaluates eight
mainstream models, including both open-source and closed-source systems such
as Qwen 2.5-VL-72B and Gemini 2.5 pro. The evaluation results reveal notable
limitations of current MLLMs in addressing complex multimodal and circuit design
tasks. These findings emphasize the need to enhance model understanding and
application of circuit knowledge to narrow the gap between human expertise and
model performance, ultimately aiming to enable fully automated AMS circuit
design workflows.
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Figure 1: Overview of AMSbench. AMSbench includes multimodal question-answer pairs collected
from both academia and industry. The tasks are divided into schematic perception, circuit analysis,
and circuit design.

1 Introduction

The rapid advancement of large language models (LLMs) and multimodal large language mod-
els (MLLMs) has led to significant breakthroughs across diverse domains, including autonomous
driving [1], scientific research [2, 3], mathematics [4, 5, 6], and programming [7]. In the domain
of Electronic Design Automation (EDA), these models have shown promise, particularly in the
automated design of digital circuits [8]. However, the design of analog/mixed-signal (AMS) circuits
continues to pose considerable challenges due to the scarcity of high-quality data and the intrinsic
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complexity of multimodal data. As a result, the exploration and application of LLMs in AMS circuit
design remain limited and exhibit relatively poor performance [9, 10, 11]. Furthermore, current
applications focus on verbal information, while AMS circuits rely on other modalities as well, such
as schematics, plots, and charts.

A primary obstacle lies in the limited capability of existing MLLMs to accurately interpret circuit
schematics. Unlike netlists, schematics convey richer and more nuanced structural information
beyond abstract connectivity. Recent work [12, 8] has recognized this limitation and introduced tools
capable of automatically converting schematics into netlists, thereby enabling the creation of large-
scale, high-quality datasets suitable for training models. With the recent advancements in the visual
capabilities of MLLMs—such as GPT-4o [13] and Qwen2.5 [14]—schematic recognition accuracy
has improved significantly, laying a solid foundation for the automated analysis and design of AMS
circuits. Despite these advancements, current applications often focus on isolated tasks—such as
netlist generation [10, 15] and bug identification [16]—while lacking comprehensive evaluation
frameworks.
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Figure 2: Comparison of 7 top MLLMs on 14
subtasks

In particular, there has been little systematic in-
vestigation into the following three fundamental
questions:

1. How accurately can models recognize and in-
terpret analog/mixed-signal circuit schematics?

2. What is the upper bound of domain-specific
knowledge that models can attain in AMS circuit
analysis and design?

3. To what degree are models capable of sup-
porting the automation of AMS circuit design?

To address these questions and bridge the ex-
isting research gaps, we propose AMSbench, a
comprehensive benchmark designed to evaluate
the capabilities of advanced models in the con-
text of AMS circuit design. AMSbench assesses
model performance across three key dimensions:
perception, analysis, and design.

In the perception task, the objective is to evaluate how accurately MLLMs can generate netlists directly
from circuit schematics, reflecting their schematic recognition capabilities. This is a non-trivial
challenge due to the large number of components and their intricate interconnections. We further
decompose this task into sub-tasks such as component counting, type identification, and connection
relationship recognition, culminating in the primary goal of accurate netlist generation. The analysis
task examines the models’ understanding of circuit functionality, their ability to identify critical
building blocks, and their comprehension of trade-offs among performance metrics—key aspects
in AMS circuit design and test. Finally, the design task investigates whether models can synthesize
circuits that satisfy given specifications. We also evaluate their ability to generate appropriate
testbenches to assess circuit performance across multiple criteria.

To the best of our knowledge, AMSbench is the first holistic benchmark that systematically evaluates
the performance of advanced models in AMS circuits. The overall benchmarking results of state-
of-the-art models using AMSbench are illustrated in Fig. 2. Our contributions are summarized as
follows:

• We introduce AMSbench, a multimodal benchmark designed to rigorously evaluate the
perception, analysis, and design capabilities of models in the AMS circuit domain. AMS-
bench consists of three major components: AMS-Perception (6k), AMS-Analysis (2k), and
AMS-Design (68).

• We conduct a comprehensive evaluation of both open-source and proprietary models on
AMSbench, providing detailed comparisons and performance insights across all tasks.

• We release the AMSbench dataset at the provided URL, fostering transparency and repro-
ducibility in this emerging research area.
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2 Related Work

2.1 LLM for circuit design

LLMs have demonstrated remarkable potential in the field of EDA, excelling in tasks related to
system-level design [17], RTL [18, 19], synthesisand physical design of digital circuits. This success
is primarily due to the modular nature of digital circuit descriptions, which resemble code. However,
AMS circuit designs, with their transistor-level descriptions, pose a significantly greater challenge
for LLMs in terms of accurate understanding and description. Despite this, some exploratory
work has been undertaken in AMS circuit design [20, 21]. Artisian [11] develop an LLM that
automatically generates operational amplifiers by combining advanced prompt engineering techniques
like SFT and Tree of Thought. Analogcoder [10] propose using LLMs with predefined sub-circuit
libraries for iterative design. AnalogGenie [9] converts circuit topologies into Eulerian circuit
representations and uses SFT for synthesizing new circuits. Notably, to ensure the synthesis of circuits
that meet specifications, AnalogGenie applies RLHF [22] (Reinforcement Learning with Human
Feedback) as a post-training technique. ADO-LLM [23] combines LLMs with Bayesian optimization
to generate higher-quality candidate points, enhancing efficiency in the sizing process. Layout
Copilot uses multiple intelligent agents to improve the efficiency and performance of automated
layout generation. AMSnet-kg [24] employs a knowledge graph-based RAG (Retrieval-Augmented
Generation) approach, utilizing a large-scale, pre-constructed circuit database to select and generate
circuit topologies that meet specifications. However, it is worth noting that these works mainly focus
on purely language-based LLMs, while circuit design often relies heavily on schematic diagrams.
Both CHAI [8] and AMSnet [12] point out that existing MLLMs still lack the capability to effectively
recognize circuit schematics.

2.2 Benchmarking for EDA

The academic infrastructure for LLM research in EDA has made significant progress, with many
available benchmarks and datasets that facilitate more effective development of LLMs in the EDA field.
VerilogEval [25] introduces a benchmark for evaluating Verilog code generation, while RTLLM [26]
develops a benchmark for evaluating RTL code generation. However, these benchmarks focus
primarily on digital circuits, and due to the complexity of analog circuits, benchmarks in the analog
circuit domain are still lacking. Analogcoder [10] proposes a benchmark to evaluate LLMs in AMS
circuit design, categorizing circuits into two levels: simple and complex. [27] presents a benchmark to
assess LLMs’ understanding of AMS circuits, including 510 simple questions. Currently, benchmarks
in the AMS circuit and EDA domains are limited to LLMs and do not comprehensively evaluate
MLLMs’ ability to recognize, understand, and reason about circuit schematics or assess AMS circuit
design. To address these gaps, we propose AMSbench.

3 AMSbench Construction

3.1 Data Collection and Curation

To cover a wide range of knowledge and typical question types in the AMS circuit domain, we gather
a diverse collection of research papers, textbooks [28, 29, 30, 31], and commercial circuit datasheets.
We convert all documents from PDF to Markdown format using MinerU[32], enabling efficient ex-
traction of embedded visual elements such as circuit schematics. For schematic-to-netlist translation,
we utilize AMSnet[12], which allows us to accurately recover component-level connectivity and
circuit topology. To enrich the dataset with semantic information, we use a combination of manual
annotations from field experts and outputs from state-of-the-art MLLMs [13, 14]. We then apply
carefully crafted prompt engineering and filter strategies to generate detailed schematic captions.
This process yields high-quality pairs of <circuit schematic, caption>.

For textbook-derived data, we organize content according to the logical structure and chapter align-
ment of each source. For datasheet content, we extract structured performance specifications associ-
ated with each circuit. Based on the extracted information, we manually construct a question–answer
dataset focused on circuit principles, behavior, and performance metrics, as illustrated in Fig. 3.
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Figure 3: Data collection and curation for AMSBench
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Figure 4: Example question generation for AMSbench

3.2 Evaluation

The goal of AMSbench is to thoroughly evaluate MLLMs on the potential applications and tasks in
the AMS circuit domain, as shown in Fig. 1. For the design of specific problems, we develop a multi-
dimensional evaluation framework that includes perception, analysis, and design. This framework
addresses the potential uses of MLLMs in assisting users with interpreting and designing circuit
schematics, both automatically and semi-automatically. Considering the complex data modalities and
diverse tasks within the AMS circuit domain, our tasks encompass Visual Question Answering (VQA)
and Textual Question Answering (TQA). These include multiple-choice questions, computational
problems, and open-ended generative questions. We systematically construct questions for each task
at multiple levels to accommodate various difficulties and circuit types.

Evaluation Dimensions For the perception tasks, we focus on recognizing elements in circuit
schematics. We define an element as any component or device represented by a line in a netlist, such
as transistors, resistors, subcircuit symbols, etc. MLLMs are evaluated on their accuracy of element
counting, their precision in identifying the connectivity between elements, and their capability to
recognize the entire circuit’s netlist, as illustrated in Fig. 4(a). Accurate identification of elements,
connectivity, and ports is fundamental to understanding and analyzing circuits. The complexity of
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element types and their connections in schematics makes this task particularly challenging, testing the
MLLM’s ability to perceive complex images more rigorously than traditional visual counting tasks.

For the analysis tasks, AMSbench primarily assesses the MLLMs’ comprehension of circuit schemat-
ics. This includes the recognition and analysis of circuit functions, as well as the detection of
functional building blocks within the circuits, as illustrated in Fig. 4(b). We also evaluate the LLMs’
and MLLMs’ understanding of the trade-offs between different circuit performances. Accurately
analyzing a circuit and its corresponding performance metrics is crucial for ensuring the proper
design of circuits, forming the basis for accurate circuit design.
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Figure 5: The flowchart of design task

For the design tasks, we consider both the design of cir-
cuits and testbenches, as shown in Fig. 5. Proper circuit
design ensures that the functionality meets specifications,
while the design of testbenches ensures that the circuit’s
performance can be accurately measured. These two tasks
are central to the AI-driven automation of AMS circuit
design. In setting up the circuit design task, we adopt and
expand upon the benchmark defined by AnalogCoder [10].

Difficulty Levels We classify the questions into three
difficulty levels. Specifically, for the perception task, we
categorize the difficulty based on the number of elements
in the circuit: simple (num < 10), medium (10 < num <
20), and difficult (num > 20). For circuit functionality
analysis, we classify the problems according to the circuit
type and group them into two levels based on their appearance in educational stages: undergraduate
and graduate levels. For testing the trade-offs between circuit performances, we assign a classification
suitable for engineers. For the design task, we classify the circuits based on their complexity into
three levels: simple, complex, and system-level circuits.

3.3 AMSBench Statistics

Fig. 6 illustrates the subtasks involved in the perception task along with the number of questions at
varying difficulty levels. Fig. 7 presents statistical information for the analysis task and its various
subtasks. The VQA tasks focus on evaluating the MLLM’s ability to interpret circuit schematic
images, while the TQA tasks assess the model’s understanding of circuit knowledge and its awareness
of performance trade-offs. Table 1 and Table 2 present an overview of the design tasks. For the circuit
design section, we incorporated the benchmarks provided by AnalogCoder [10] and further extended
them with additional circuit tasks, including system-level circuit design. The testbench design task
fills a notable gap in the current community by introducing a previously underexplored category.

CKT_TYPE NUM CKT_TYPE NUM CKT_TYPE NUM CKT_TYPE NUM

Amplifier 7 / 0 / 0 Oscillator 0 / 2 / 0 Subtractor 0 / 1 / 0 LDO 0 / 1 / 0
Inverter 2 / 0 / 0 Integrator 0 / 1 / 0 Schmitt trigger 0 / 1 / 0 Comparator 0 / 1 / 0
Current Mirror 2 / 0 / 0 Differentiator 0 / 1 / 0 VCO 0 / 1 / 0 Bandgap 0 / 1 / 0
Opamp 2 / 0 / 0 Adder 0 / 1 / 0 PLL 0 / 0 / 1 SAR-ADC 0 / 0 / 1

Table 1: Circuit Table with CKT_TYPE and NUM

ID TestBench_TYPE Num(Metrics) ID TestBench_TYPE Num(Metrics) ID TestBench_TYPE Num(Metrics)

1 OTA 7 5 MOS 1 9 LDO 7
2 Bootstrap 1 6 Telescope_Amplifier 7 10 Bandgap 4
3 Comparator 2 7 Folded Cascode Amp 5 11 Unit_capacitor 1
4 PLL 2 8 SAR-ADC 1 12 PLL-VCO 2

Table 2: Circuit Table with ID, TestBench_TYPE, and Number of Metrics
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4 Experiments

4.1 Models

We perform experiments on mainstream closed-source MLLMs: GPT4o [13], Grok-3 [33], Gemini-
2.5-pro [34], Claude3.7 sonnet [35], Doubao-1.5-vision-pro-32k [36], and open-source models:
Kimi-VL [37], Qwen2.5-VL 72B [14], DeepSeek-R1 [38]. We evaluate both TQA tasks on all
models, and VQA tasks on all models except DeepSeek-R1. We use all open-source models with
default parameters and deploy on up to 8 A100 GPUs.

4.2 Metrics

（ ）（ ）

(c) pred(a) schematic (b) GT

(c)

Figure 8: Edit distance computation between
the GT netlist and the predicted netlist. The
graph illustrates inter-device connections with
each device abstracted as a node.

For single-choice questions, we adopt accuracy
(ACC) as the evaluation metric and F1 score for multi-
choice questions. For netlist recognition tasks, we
define a Netlist Edit Distance (NED) as the evalua-
tion metric, with the calculation procedure illustrated
in the Fig. 8. The NED for each schematic image is
normalized as follows:

NEDnorm =
|GT ∪ Pred | − |GT ∩ Pred |

|GT |
(1)

For evaluating the circuit design and testbench gen-
eration tasks, we use pass@k as the primary metric
to measure the success rate of model-generated solu-
tions.The pass@k metric is calculated as follows.For
a given problem, the model generates k distinct an-
swers. The pass@k value is determined by dividing the number of answers that pass the simulation
check by k. For instance, if 5 answers are generated and 3 pass, then pass@5 = 3/5 = 0.6. Additionally,
each task is evaluated through 5 repeated experiments, with the average of the pass@k values taken
as the final result.

4.3 Main Results

perception Table 3 presents the models’ performance on fundamental circuit schematic recognition
tasks. Specifically, component counting and classification, both of which are essential for accurate
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netlist extraction. Gemini achieves the best overall results. However, due to the complexity and
diversity of component types, the models show limitations in accurate counting. For component
type classification, Gemini performs well, reaching 94% accuracy. Among open-source models,
Qwen2.5-VL achieves 86%, suggesting that open-source models still have room for improvement in
component type recognition.

Table 4 presents the accuracy of MLLMs in identifying inter-device connectivity. While the models
can produce reasonably accurate predictions for local connections, they fall short in reconstructing
the complete netlist. Even netlists produced by the best-performing model, Gemini 2.5 Pro, require
substantial modifications to align with the ground truth. Closed-source models perform significantly
better on this task. Some of the open-source models fails to produce outputs in the required format.

Models Total
counting

Type
counting

Device
classification

Location
judgement

ACC
(↑)

MSE
(↓)

ACC
(↑)

MSE
(↓)

ACC
(↑)

ACC
(↑)

Gemini 2.5 pro 0.65 10.02 0.64 13.41 0.94 0.61
GPT-4o 0.51 19.05 0.54 28.18 0.91 0.37
Claude-3-7-sonnet 0.36 18.38 0.55 24.18 0.83 0.48
Grok-3 0.22 60.71 0.50 26.48 0.84 0.50
Doubao-1.5-vision-pro 0.24 38.13 0.51 24.76 0.93 0.45
Kimi VL A3B 0.15 49.19 0.44 34.96 0.66 0.31
Qwen2.5 VL 72B 0.43 19.59 0.49 18.59 0.86 0.56

Table 3: Performance comparison of different models across various perception tasks

Models Connection
judgement

Connection
choicement Topology

ACC (↑) F1-score (↑) NED (↓)
Gemini 2.5 pro 0.85 0.88 0.91
GPT-4o 0.73 0.65 1.40
Claude-3-7-sonnet 0.76 0.71 1.65
Grok-3 0.70 0.65 1.84
Doubao-1.5-vision-pro 0.76 0.64 1.57
Kimi VL A3B 0.53 0.53 –
Qwen2.5 VL 72B 0.77 0.52 2.38

Table 4: Comparison of models on connection judgement, choicement, and topology generation tasks

Analysis Table 5 evaluates the models’ AMS circuit analysis capabilities, including both schematic
interpretation and analysis of trade-offs in circuit performance. In schematic understanding, different
MLLMs exhibit distinct strengths: Gemini demonstrates the highest accuracy in identifying and
analyzing functional building blocks, while Grok-3 provides more accurate overall descriptions of
circuit behavior. Table 16 shows that current models can achieve relatively high accuracy in analyzing
circuit knowledge designed by undergraduate and graduate students. However, they perform poorly
in understanding the trade-offs between circuit performance metrics commonly encountered in
industry. Even the best-performing model, GPT-4o, only achieves 58% accuracy, indicating that
LLMs currently lack a clear understanding of the expected performance characteristics of each circuit
in the design process.

Design Table 6 shows the performance of the models on circuit design and testbench design tasks.
For the former task, Grok-3 and Claude-Sonnet achieve the best results; however, for the latter task,
none of the current models are able to directly generate syntactically correct testbench circuits, with
the occasionally exception of GPT-4o. One possible reason is that the current pretraining data lacks
sufficient testbench-related knowledge, and the metrics that need to be measured vary across different
circuits, making testbench generation highly challenging.

7



Models
Reasoning Partition Caption Function

text
Function

image
TQA

ACC (↑) F1 (↑) ACC (↑) ACC (↑) ACC (↑) ACC (↑)
Gemini 2.5 pro 0.92 0.80 0.70 0.95 0.94 0.72
GPT-4o 0.77 0.57 0.61 0.93 0.89 0.78
Claude-3-7-sonnet 0.91 0.64 0.98 0.88 0.74 0.74
Grok-3 0.61 0.59 0.41 0.77 0.22 0.74
Doubao-1.5-vision-pro 0.83 0.60 0.70 0.94 0.93 0.76
Kimi VL A3B 0.74 0.25 0.71 0.59 0.28 0.59
Qwen2.5 VL 72B 0.82 0.45 0.78 0.78 0.85 0.69

Table 5: Comparison of models on reasoning, partition identification, caption generation, circuit type
prediction, and TQA tasks

Model CKT design TB design
Pass@3 Pass@5 Pass@10 Syntax@5 Metric@5

Gemini 2.5
pro 0.57 0.54 0.43 0 0

GPT-4o 0.47 0.49 0.42 0.084 0
Claude-3-7-
sonnet 0.63 0.64 0.50 0 0

Grok-3 0.65 0.54 0.61 0 0
Doubao-1.5-
vision-pro 0.45 0.24 0.15 0 0

Qwen2.5 VL
72B 0.47 0.41 0.33 0 0

Kimi VL
A3B 0.41 0.25 0.13 0 0

DeepSeek-
R1 0.55 0.51 0.45 - -

Table 6: Pass rates comparison across models at different levels (Pass@3, Pass@5, Pass@10) and
a Testbench design metric. Syntax: generated testbench is syntactically correct to run simulation.
Metric: generated testbench is topologically and parametrically correct and produces the correct
performance metric. Averages between all circuit types in Table 1, full results are available in the
appendix in Tables 18-21.

5 Observation and Findings

Based on the models’ performance across various tasks, we summarize and analyze the current
challenges faced by Multimodal Large Language Models (MLLMs) in the field of AMS circuit from
the dimensions of perception, analysis, and design.

Perceptual capabilities: Existing MLLMs remain incapable of accurately interpreting circuit
schematics. While certain models demonstrate promising performance in capturing localized connec-
tivity patterns, their effectiveness significantly deteriorates when tasked with comprehensive netlist
extraction, as illustrated in Fig. 23. A primary challenge is that MLLMs are inaccurate at assigning
connection points (i.e. pins and ports) to their parent components, resulting in various connectivity
errors.

Analysis capabilities: Some MLLMs demonstrate reasonable levels of circuit analysis capabil-
ity. They accurately interpret circuit functionalities, which indicates a comprehensive and precise
understanding of circuit knowledge, as well as a degree of generalization in visual recognition when
dealing with stylized images. Nevertheless, for the reasoning tasks, the models occasionally produce
correct answers despite evident errors in their analytical process, which undermines our confidence
in their correct answers. For instance, when examining an operational amplifier circuit diagram
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comprising over 15 components, the model may misidentify the current mirror structure formed by
two transistors M1-M2, and incorrectly state the structure is formed by two other transistors M3-M4.
This misidentification aligns with the model’s observed performance in tasks involving component
counting and device classification. Possible reasons include: 1. The model exhibits hallucination
phenomena when recognizing circuit diagrams with a high number of components [39]. 2. Models
generally prioritize capturing global information, often at the expense of local information, which is
crucial for nuanced understanding [40].

In the circuit design process, particularly during the sizing and layout auto-generation stages, a model
with strong circuit analysis abilities can significantly reduce the parameter search space and enable
partitioning of the circuit into macros for efficient layout generation. However, the current model
lacks the ability to accurately quantify the trade-offs between circuit performance metrics, which
limits its capability to recommend the appropriate circuit topology when given a target specification.

System-level circuit design capabilities: Evaluation findings demonstrate that current models
exhibit satisfactory performance in simple circuit design tasks but reveal constrained proficiency in
comprehending complex and system-level circuits, such as the Successive Approximation Register
Analog-to-Digital Converter (SAR-ADC). For system-level circuits, the preponderance of model-
generated designs failed to satisfy the netlist rule check, which validates the accuracy of component
interconnections, and none fulfilled the stipulated circuit performance criteria. A comprehensive
analysis of the SAR-ADC design produced by the GPT-4o model, which demonstrates comparatively
robust performance across diverse tasks, is presented in figure 29 in the appendix. The circuit
schematic indicates that GPT-4o accurately implements the differential input structure. Nevertheless,
owing to an inadequate grasp of the operational principles underlying the SAR-ADC, the model was
unable to extend the design beyond the differential input pair, resulting in an extremely incomplete
circuit.

6 Conclusion and Future Work

This paper introduces AMSbench, a benchmark for evaluating the capabilities of Multimodal Large
Language Models (MLLMs) in AMS circuit design. The benchmark assesses model performance
across three key dimensions: schematic perception, circuit analysis, and circuit design, encompassing
a variety of tasks.

The evaluation highlights significant limitations in current models, particularly in schematic per-
ception and complex circuit design. While some models excel in basic component recognition and
circuit analysis tasks, they struggle with more advanced tasks, such as system-level circuit design
and accurate schematic interpretation. Notably, the models failed to generate correct testbenches for
complex circuits, pointing to challenges in interpreting netlists and partitioning tasks.

Future research will prioritize the expansion of datasets to enhance the robustness and generalizability
of multimodal models. It will investigate advanced methodologies, such as RAG and RLHF, to
augment design capabilities. Additionally, efforts will be made to incorporate grounding modules
or enriched datasets to improve performance on perception tasks, thereby advancing the model’s
analytical and design proficiencies. Furthermore, integrating topology generation, sizing, and
floorplanning into the design process is planned to enable fully automated, end-to-end circuit design.
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